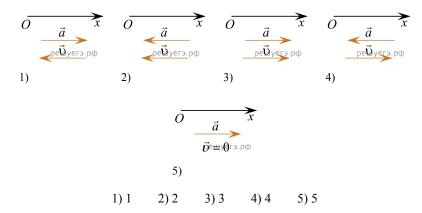

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

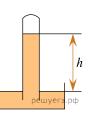
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Физическим явлением является:
- 1) секунда 2) ског
 - 2) скорость
- 3) линейка
- 4) плавление
 - 5) килограмм
- **2.** На рисунке изображены положения шарика, равномерно движущегося вдоль оси Ox, в моменты времени t_1 , t_2 , t_3 . Момент времени t_3 равен:



3. Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения $\upsilon_1=25$ м/с, $\upsilon_2=30$ м/с, $\upsilon_3=35$ м/с, а радиусы кривизны траекторий $R_1=40$ м, $R_2=45$ м, $R_3=50$ м. Промежутки времени $\Delta t_1, \Delta t_2, \Delta t_3$, за которые мотогонщики проедут поворот, связаны соотношением:

1)
$$\Delta t_1 = \Delta t_2 = \Delta t_3$$
 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$ 4) $\Delta t_1 > \Delta t_2 = \Delta t_3$ 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$


4. Кинематический закон движения материальной точки вдоль оси Ox имеет вид: $x(t)=8+2t-3t^2$, где координата x выражена в метрах, а время t — в секундах. Скорость \vec{v} и ускорение \vec{a} материальной точки в момент времени t_0 = 0 с показаны на рисунке, обозначенном цифрой:

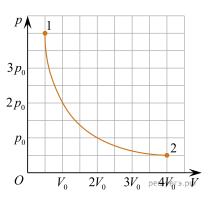
5. Три вагона, сцепленные друг с другом и движущиеся со скоростью, модуль которой $\nu_0=3,6\,\frac{M}{c}$, столкнулись с тремя неподвижными вагонами. Если массы всех вагонов одинаковы, то после срабатывания автосцепки модуль их скорости ν будет равен:

1)
$$1, 2 \frac{M}{C}$$
 2) $1, 4 \frac{M}{C}$ 3) $1, 8 \frac{M}{C}$ 4) $2, 5 \frac{M}{C}$ 5) $3, 6 \frac{M}{C}$

6. Запаянную с одного конца трубку наполнили глицерином ($\rho=1260~{{\rm K\Gamma}\over{\rm M}^3}$), а затем погрузили открытым концом в широкий сосуд с глицерином (см.рис.). Если высота столба глицерина h=7,90 м, то атмосферное давление p равно:

- 1) 98,0 кПа 2) 98,8 кПа 3) 99,5 кПа 4) 101 кПа 5) 102 кПа
- 7. Если абсолютная температура тела изменилась на $\Delta T = 50 \text{ K}$, то изменение его температуры Δt по шкале Цельсия равно:
 - 1) $\frac{50}{273}$ °C 2) $\frac{273}{50}$ °C 3) 50 °C 4) 223 °C 5) 323 °C

8. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объём уменьшился от V_1 = 80 л до V_2 = 64 л. Если начальная температура газа t_1 = 97 °C, то конечная температура t_2 газа равна:


1) 13 °C

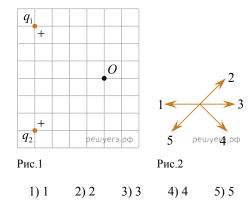
2) 23 °C

3) 33 °C

4) 43 °C 5) 53 °C

9. На рисунке показан график зависимости давления p одноатомного идеального газа от его объёма V. При переходе из состояния 1 в состояние 2 газ совершил работу, равную A=9 кДж. Количество теплоты Q, полученное газом при этом переходе, равно:

1) 1 кДж


2) 4 кДж

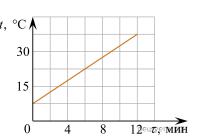
3) 5 кДж

4) 7 кДж

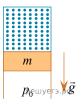
5) 9 кДж

10. Точечные заряды, модули которых $|q_1| = |q_2|$ расположены на одной прямой (рис. 1). Направление напряженности E результирующего электростатического поля, созданного этими зарядами в точке O, на рисунке 2 обозначено цифрой:

11. Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=30~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя $t=0,60~\rm c$, а модуль ускорения автомобиля при торможении $a=6,0~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.

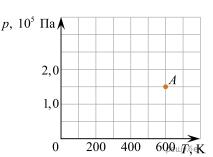

12. Телу, находящемуся на гладкой наклонной плоскости, образующей угол $\alpha=60^\circ$ с горизонтом, ударом сообщили начальную скорость, направленную вверх вдоль плоскости. Если модуль начальной скорости $\upsilon_0=48$ м/с, то время t, через которое тело вернется в начальное положение, равно? Ответ приведите в секундах.

13. Тело массой m=0,25 кг свободно падает без начальной скорости с высоты H. Если на высоте h=20 м потенциальная энергия тела по сравнению с первоначальной уменьшилась на $_{\Pi}=65$ Дж, то высота H равна ... м.


14. Два тела массами $m_1 = 6,00$ кг и $m_2 = 8,00$ кг, модули скоростей которых одинаковы ($\upsilon_1 = \upsilon_2$), двигались по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой u = 5,0 м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.

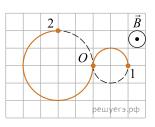
15. По трубе, площадь поперечного сечения которой $S=5,0\,\mathrm{cm}^2$, перекачивают идеальный газ ($M=44\cdot 10^{-3}\,\mathrm{кг/моль}$), находящийся под давлением $p=392\,\mathrm{к}$ Па при температуре $T=280\,\mathrm{K}$. Если газ массой $m=40\,\mathrm{kr}$ проходит через поперечное сечение трубы за промежуток $\Delta t=10\,\mathrm{muh}$, то средняя скорость $\langle \upsilon \rangle$ течения газа в трубе равна ... м/с.

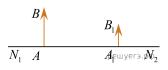
16. На рисунке приведён график зависимости температуры t тела ($c=1000~\rm{Дж/(кг^{-o}C)}$) от времени τ . Если к телу ежесекундно подводилось количество теплоты $Q_0=1,0~\rm{Дж}$, то масса m тела равна ... Γ .



17. В вертикальном цилиндрическом сосуде, закрытом снизу легкоподвижным поршнем массой m=10 кг и площадью поперечного сечения $S=40~{\rm cm}^2$, содержится идеальный одноатомный газ. Сосуд находится в воздухе, атмосферное давление которого $p_0=100~{\rm kHa}$. Если при изобарном нагревании газа поршень переместился на расстояние $|\Delta h|=10~{\rm cm}$, то количество теплоты Q, сообщённое газу, равно ... Дж.

18.

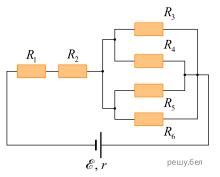

В pT-координатах точкой A отмечено состояние p, 10^5 Па идеального газа, количество вещества которого v=1,0 моль. Объём V газа в этом состоянии равен ... л.


19. Вечером при температуре воздуха $t_1=11,0$ °C относительная влажность воздуха была $\phi=60\%$. Ночью температура понизилась до $t_2=2,0$ °C. Если плотность насыщенного водяного пара при температурах t_1 и t_2 равна соответственно $\rho_{\rm H1}=10,0$ $\frac{\Gamma}{{
m M}^3}$ и $\rho_{\rm H2}=5,6$ $\frac{\Gamma}{{
m M}^3}$, то из воздуха объемом V=40 м 3 выпала роса массой m, равной ... Γ .

20. >

Два иона (1 и 2) с одинаковыми заряди $q_1=q_2$, вылетевшие одновременно из точки O, равномерно движутся по окружностям под действием однородного магнитного поля, линии индукции \vec{B} которого перпендикулярны плоскости рисунка. На рисунке показаны траектории этих частиц в некоторый момент времени t_1 . Если масса первой частицы $m_1=18$ а. е. м., то масса второй частицы m_2 равна ... а. е. м.

- **21.** Короткий световой импульс, испущенный лазерным дальномером, отразился от объекта и был зарегистрирован этим же дальномером через промежуток времени $\Delta t = 0,760$ мкс после испускания. Расстояние s от дальномера до объекта равно ... м.
- **22.** В идеальном колебательном контуре, состоящем из конденсатора емкостью C=10 нФ и катушки индуктивности, происходят свободные электромагнитные колебания с частотой v=8,2 кГц. Если максимальная сила тока в катушке $I_0=50$ мА, то сему равно максимальное напряжение U_0 на конденсаторе? Ответ приведите в вольтах.
- **23.** Стрелка AB высотой H=3,0 см и её изображение A_1B_1 высотой h=2,0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7,0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

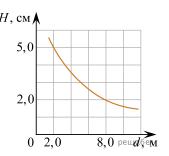

- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}$ Au. Если период полураспада этого изотопа $T_{\frac{1}{2}}=2,7~{
 m cyr.}$, то за промежуток времени $\Delta t=8,1~{
 m cyr.}$ распадётся ... тысяч ядер $^{198}_{79}$ Au.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \,\mathrm{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90.0$ Вт. Если внутреннее сопротивление источника тока r=4.00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm C}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

